Logarithms

1. If log₁₀ 2 = 0.3010 and log₁₀ 3 = 0.4771, then log₁₀ 6 is equal to:

A. 0.7781

B. 0.7780

C. 0.7785

D. 0.7770

       A. 0.7781

2. The value of log₁₀ (1/1000) is:

A. 3

B. 0

C. -3

D. 1

       C. -3

3. If log₅ (x + 4) = 2, find the value of x.

A. 21

B. 22

C. 23

D. 24

      A. 21

4. If logₓ 81 = 4, then x = ?

A. 9

B. 3

C. 4

D. 8

       B. 3

5. Find the value of log₃ 81.

A. 3

B. 4

C. 5

D. 2

       B. 4

6. If log₁₀ x = 2, then the value of x is:

A. 10

B. 100

C. 1000

D. 0.01

       B. 100

7. Simplify: log₁₀ 25 + log₁₀ 4 − log₁₀ 10

A. 1.0

B. 1.3

C. 1.4

D. 1.6

       A. 1.0

8. The value of log₁₀ 1 is:

A. 0

B. 1

C. -1

D. Undefined

       A. 0

9. The value of log₁₀ √1000 is:

A. 1.5

B. 2

C. 3

D. 0.5

       A. 1.5

10. If log₅ 25 = x, then the value of x is:

A. 1

B. 2

C. 3

D. 4

       B. 2

Scroll to Top